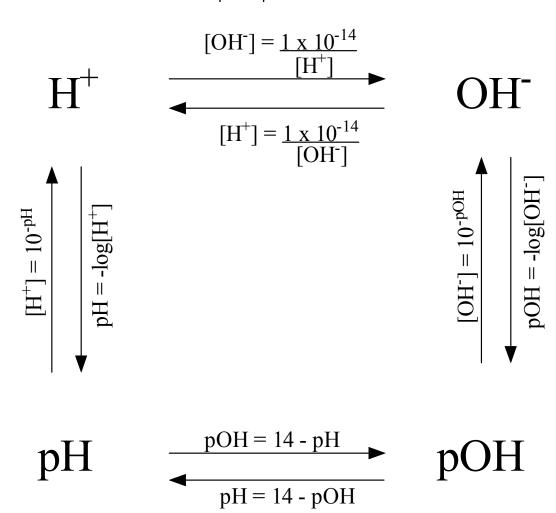
pH Calculations

To a small but measurable degree, water undergoes self-ionization:

$$H_2O(\ell) + H_2O(\ell) \rightarrow H_3O^+(aq) + OH^-(aq)$$

The use of brackets is a way of abbreviating "molar concentration." Thus, $[H^{\dagger}]$ can be read, "the concentration of hydrogen ion in moles per liter. [OH-] can be read, "the concentration of hydroxide ion in moles per liter.

At 25°C, $[H^+]$ = 1.0 x 10⁻⁷ moles H^+ per liter of solution $[OH^-]$ = 1.0 x 10⁻⁷ moles OH^- per liter of solution


Ionization Constant for Water (K_W)

- 1. $K_W = [H^+][OH^-] = (1.0 \times 10^{-7})(1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$
- 2. K_W is a constant at ordinary ranges of room temperatures

pH is the negative of the common logarithm of the hydrogen ion concentration $pH = -log [H^{+}]$

pOH is the negative of the common logarithm of the hydroxide ion concentration pOH = - log [OH⁻]

$$pH + pOH = 14.0$$

Problems

[H⁺] and [OH⁻]

- 1. Calculate $[H^{\dagger}]$ of a solution whose $[OH^{-}] = 1 \times 10^{-5} M$
- 2. Calculate [OH-] of a solution whose $[H^{+}] = 1 \times 10^{-2} M$
- 3. Calculate $[H^{+}]$ of a solution whose $[OH^{-}] = 2.5 \times 10^{-4} M$
- 4. Calculate $[OH^{-}]$ of a solution whose $[H^{+}] = 0.00375 \text{ M}$

[H⁺] and pH

- 1. Calculate the pH of a solution whose $[H^{+}] = 1 \times 10^{-6} M$
- 2. Calculate the pH of a solution whose $[H^{+}] = 9.65 \times 10^{-3} M$
- 3. Calculate the $[H^{+}]$ of a solution whose pH = 2.68
- 4. Calculate the $[H^{\dagger}]$ of a solution whose pH = 11.93

[OH⁻] and pOH

- 1. Calculate the pOH of a solution whose $[OH] = 1 \times 10^{-11} M$
- 2. Calculate the pOH of a solution whose $[OH^{-}] = 7.24 \times 10^{-3} M$
- 3. Calculate the [OH] of a solution whose pOH = 4.00
- 4. Calculate the [OH-] of a solution whose pOH = 1.14

pH and pOH

- 1. Calculate the pOH of a solution whose pH = 6.00
- 2. Calculate the pOH of a solution whose pH = 9.78
- 3. Calculate the pH of a solution whose pOH = 12.00
- 4. Calculate the pH of a solution whose pOH = 3.88

pH and [OH⁻]

- 1. Calculate the pH of a solution whose $[OH_1] = 1 \times 10^{-11} M$
- 2. Calculate the pH of a solution whose [OH] = 0.0000046 M
- 3. Calculate the $[OH^{-}]$ of a solution whose pH = 3.00
- 4. Calculate the $[OH^{-}]$ of a solution whose pH = 10.62

pOH and [H⁺]

- 1. Calculate the pOH of a solution whose $[H^{+}] = 1 \times 10^{-1} M$
- 2. Calculate the pOH of a solution whose $[H^{+}] = 5.55 \times 10^{-5} M$
- 3. Calculate the $[H^{\dagger}]$ of a solution whose pOH = 8.00
- 4. Calculate the [H⁺] of a solution whose pOH = 9.87