Chapter 17 - Spontaneity, Entropy, and Free Energy

- 17.1 Spontaneous Processes and Entropy
 - A. First Law
 - 1. "Energy can neither be created nor destroyed"
 - 2. The energy of the universe is constant
 - B. Spontaneous Processes
 - 1. Processes that occur without outside intervention
 - 2. Spontaneous processes may be fast or slow
 - a. Many forms of combustion are fast
 - b. Conversion of diamond to graphite is slow
 - C. Entropy (S)
 - 1. A measure of the randomness or disorder
 - 2. The driving force for a spontaneous process is an increase in the entropy of the universe
 - 3. Entropy is a thermodynamic function describing the number of arrangements that are available to a system
 - a. Nature proceeds toward the states that have the highest probabilities of existing
 - D. Positional Entropy
 - 1. The probability of occurrence of a particular state depends on the number of ways (microstates) in which that arrangement can be achieved

$$S_{solid} < S_{liquid} << S_{gas}$$

- 17.2 Entropy and the Second Law of Thermodynamics
 - A. Second Law of Thermodynamics
 - 1. "In any spontaneous process there is always an increase in the entropy of the universe"
 - 2. "The entropy of the universe is increasing"
 - 3. For a given change to be spontaneous, ΔS_{univ} must be positive

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$$

- 17.3 The Effect of Temperature on Spontaneity
 - A. Direction of Heat Flow
 - 1. Entropy changes in the surroundings are primarily determined by heat flow
 - a. Exothermic reactions in a system at constant temperature increase the entropy of surroundings
 - b. Endothermic reactions in a system at constant temperature decrease the entropy of surroundings
 - c. The impact of the transfer of a given quantity of energy as heat to or from the surroundings will be greater at lower temperatures
- 17.4 Free Energy (G), also called "Gibbs Free Energy"
 - A. Calculating Free Energy Change (constant temperature and pressure)
 - 1. $\Delta G = \Delta H T\Delta S$
 - a. H is enthalpy
 - b. T is Kelvin temperature

- B. Free Energy and Spontaneity
 - 1. Reactions proceed in the direction that lowers their free energy $(-\Delta G)$

Value of ∆H	Value of T∆S	Value of ∆G	Spontaneity
Negative	Positive	Negative	Spontaneous
Positive	Negative	Positive	Nonspontaneous
Negative	Negative	???	Spontaneous if the absolute value of
			ΔH is greater than the absolute value
			of T∆S (low temperature)
Positive	Positive	???	Spontaneous if the absolute value of
			T∆S is greater than the absolute value
			of ∆H (high temperature)

17.5 Entropy Changes in Chemical Reactions

- A. Constant Temperature and Pressure
 - 1. Reactions involving gaseous molecules
 - a. The change in positional entropy is dominated by the relative numbers of molecules of gaseous reactants and products

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$$

9 molecules 10 molecules

∆S increases

- B. Third Law of Thermodynamics
 - 1. "The entropy of a perfect crystal at O K is zero" (NO disorder, since everything is in perfect position)
- C. Calculating Entropy Change in a Reaction

$$\Delta S_{reaction}^{0} = \sum n_{p} S_{products}^{0} - \sum n_{r} S_{reac \tan ts}^{o}$$

- 1. Entropy is an extensive property (a function of the number of moles)
- 2. Generally, the more complex the molecule, the higher the standard entropy value

17.6 Free Energy and Chemical Reactions

- A. Standard Free Energy Change
 - 1. ΔG^0 is the change in free energy that will occur if the reactants in their standard states are converted to the products in their standard states
 - 2. ΔG^0 cannot be measured directly
 - 3. The more negative the value for ΔG^0 , the farther to the right the reaction will proceed in order to achieve equilibrium
 - a. Equilibrium is the lowest possible free energy position for a reaction
- B. Calculating Free Energy Change
 - 1. Method #1, for reactions at constant temperature:

$$\Delta G^0 = \Delta H^0 - T\Delta S^0$$

2. Method #2, an adaptation of Hess's Law:

$$C_{diamond}(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta G^0 = -397 \text{ kJ}$
 $\underline{C_{graphite}(s) + O_2(g) \rightarrow CO_2(g)}$ $\Delta G^0 = -394 \text{ kJ}$
 $C_{diamond}(s) \rightarrow C_{graphite}(s)$ $\Delta G^0 = -397 \text{ kJ} - (-394 \text{ kJ}) = -3\text{kJ}$
(Complete example is on page 798)

- 3. Method #3, using standard free energy of formation (ΔG_f^0)
 - a. Standard Free Energy of Formation is the change in free energy that accompanies the formation of 1 mole of that substance from its constituent elements with all reactants and products in their standard states
 - b. ΔG_f^0 of an element in its standard state is zero

$$\Delta G^{0} = \sum n_{p} \Delta G_{f (products)}^{0} - \sum n_{r} \Delta G_{f (reac \tan ts)}^{0}$$

17.7 The Dependence of Free Energy on Pressure

- A. Enthalpy, H
 - 1. enthalpy is not pressure dependent
- B. Entropy, S
 - 1. entropy depends on volume, so it also depends on pressure

 $S_{large\ volume} > S_{small\ volume} \ S_{low\ pressure} > S_{high\ pressure}$

- 2. $G = G^0 + RTIn(P)$
 - a. G^0 is the free energy of the gas at a pressure of 1 atm
 - b. G is the free energy of the gas at a pressure of P atm
 - c. R is the universal gas constant, T is Kelvin temperature
- 3. $\Delta G = \Delta G^0 + RTIn(Q)$
 - a. Q is the reaction quotient (from the law of mass action, section 13.5)
 - b. R is the gas constant (8.3145 J/K·mol)
 - c. ΔG^0 is the free energy change for the reaction with all reactants and products at a pressure of 1 atm
 - d. ΔG is the free energy change for the reaction for the specified pressures of reactants and products

17.8 Free Energy and Equilibrium

- A. Thermodynamic View of Equilibrium
 - Equilibrium point occurs at the lowest value of free energy available to the reaction system
 - 2. At equilibrium, $\Delta G = 0$ and Q = K $\Delta G^0 = -RTIn(K)$

ΔG^{0}	K
$\Delta G^0 = 0$	K = 1
$\Delta G^0 < 0$	K > 1
$\Delta G^0 > 0$	K < 1

B. Temperature Dependence of K

1.
$$\Delta G^0 = -RT \ln(K) = \Delta H^0 - T\Delta S^0$$

2.
$$\ln(K) = -\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R} = -\frac{\Delta H^0}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^0}{R}$$
 so $\ln(K) \propto 1/T$

3

17.9 Free Energy and Work

- A. Relationship to Work
 - 1. The maximum possible useful work obtainable from a process at constant temperature and pressure is equal to the change in free energy ("Free energy" is energy "free" to do work)

$$W_{\text{max}} = \Delta G$$

- 2. The amount of work obtained is always less than the maximum
- B. Henry Bent's First Two Laws of Thermodynamics
 - 1. First law: You can't win, you can only break even
 - 2. Second law: You can't break even

The amount of available free energy of our system (Earth) is decreasing.