Ionic Nomenclature

lonic nomenclature is the simplest of the three types of nomenclature here. Of course, the presumption is that you completed the summer assignment and remember the names of the common ions.

First identify the cation (positive ion) by name. Second, identify the anion by name. Then, put the two names together.

Examples:

AICI₃ – The cation is aluminum. The anion is chloride. The compound is aluminum chloride.

 Na_2SO_4 – The cation is sodium. The anion is sulfate. The compound is sodium sulfate.

Notice that there is no use of prefixes to denote the quantity of each ion. That is because the charge of the ions guarantees that there is only one proportion in which they can combine, so prefixes are unnecessary.

For metals that can have more than one oxidation state, it is important to identify the oxidation state in the name, using Roman numerals.

Examples:

FeCl₃ – Because the three chloride ions have a TOTAL charge of -3, so the iron must have a +3 charge. Therefore, the compound is *iron(III) chloride*.

 $Cr(NO_3)_3$ – Three nitrate ions have a TOTAL charge of -3, so the chromium must have a +3 charge. Therefore, the compound is *chromium(III) nitrate*.

	Rules for Binary Molecular Compounds	Prefixes
1.	The naming system is for compounds composed of two nonmetallic	1 – mono
	elements.	2 – di
2.	The first element keeps its name	3 – tri
	a. The first element gets a prefix if it has a subscript in the	4 – tetra
	formula	5 – penta
3.	The second element gets the <i>-ide</i> suffix (ending)	6 – hexa
	 The second element ALWAYS gets a prefix 	7 – hepta
		8 – octa
		9 – nona
		10 - deca

Compound Name	Compound Formula
Carbon dioxide	
Carbon monoxide	
Diphosphorus pentoxide	
Dinitrogen monoxide	
Silicon dioxide	
Carbon tetrafluoride	
Sulfur dioxide	
Phosphorus pentafluoride	
Oxygen difluoride	
Nitrogen dioxide	
Dinitrogen trioxide	

Compound Formula	Compound Name
N ₂ O ₄	
SO ₃	
NO	
NO ₂	
As ₂ O ₅	
PF ₃	
CS ₂	
H ₂ O	
SeF ₆	
N ₂ O ₄	
CH ₄	

Naming Acids

Acids are divided into two groups: Binary and Oxyacids. Binary acids consist of two elements. Oxyacids consist of 3 elements, one of which is oxygen.

<u>1. NAMING BINARY ACIDS</u>: The name of the binary acid consists of two words. The first word has three parts:

the "hydro" prefix the root of the nonmetal element the "ic" ending

The second word is always "acid"

Examples:

HCl = hydro chlor icacid = hydrochloric acidHBr = hydro brom icacid = hydrobromic acidHF = hydro fluor icacid = hydrofluoric acid

2. **<u>NAMING OXYACIDS</u>**: These are more difficult to name because these acids have hydrogen, a nonmetal, and may have varying numbers of oxygen atoms. For example, H_2SO_5 , H_2SO_4 , H_2SO_3 , and H_2SO_2 are all acids. How do we name them? To begin, we need a point of reference. Our reference point is this:

The "ate" ions (sulfate, nitrate, etc) make the "ic" acids (sulfuric acid, nitric acid) Examples:

 $SO_4^{2^-}$ = sulf<u>ate</u> ion H_2SO_4 = sulfur<u>ic</u> acid NO_3^- = nitr<u>ate</u> ion HNO_3 = nitr<u>ic</u> acid

Once we have our point of reference, the acid with <u>one more</u> oxygen than the -ic acid is called the per______-ic acid. The acid with <u>one less</u> oxygen then the -ic acid is called the ______-ous acid. If the acid has one less oxygen than the -ous acid, it is called the hypo-______-ous acid. <u>Examples:</u> $H_2SO_5 = persulfuric acid HNO_4 = pernitric acid$ $H_2SO_4 = sulfuric acid HNO_3 = nitric acid$ $H_2SO_3 = sulfurous acid HNO_2 = nitrous acid$ $H_2SO_2 = hyposulfurous acid HNO = hyponitrous acid$

The KEY: All you really need to know are the "ate" ions. After that, you can use the above scheme to name any oxyacid. To refresh your memory, here are some of the common "ate" ions:

sulfate = SO4 ²⁻	nitrate = NO_3^{-1}
chlorate = CIO_3^{-1}	bromate = BrO_3^{-1}
phosphate = PO ₄ ³⁻	carbonate = CO_3^{2-}

Naming Acids - Problems

<u>Name these binary acids:</u> HF H ₂ S HI	HCI HBr	
Name these oxyacids:		
H ₂ CO ₄		
H ₂ CO ₃		
H ₂ CO ₂		
H ₂ CO		-
HCIO ₄		
HCIO ₃		
HCIO ₂		
HCIO		
H ₃ PO ₅		
H ₃ PO ₄		
H ₃ PO ₃		
H ₃ PO ₂		

Write the formulas for these acids (they may or may not actually exist!):

perbromic acid	
nitrous acid	
hypobromous acid	
chromic acid	
chromous acid	
pernitric acid	-
sulfurous acid	
perchromic acid	
· · · · · · · · · · · · · · · · · · ·	-