Covalent Bonding Review

1.	Covalent bonds form when nonmetals		their valence electrons in order to get the electron configuration of a ONLY covalently bonded structures can be called					
2.	Structures that are covalent							
	Circle the compounds that are covalently bonded.							
	CS ₂	MgCl ₂ SiF ₄		PF ₃		-	NiO	
	For each compound above that is covalently bonded, calculate its molar mass, rounding to the element masses to the nearest whole number. Use a							
periodic table and show your work. Then, provide its binary covalent name. Mass Mass Mass					Mass		Mass	
	Wass	WIG55	Mass		WIG55		Mass	
_	Name	Name	Name		Name		Name	
	INGINE	Indifie	Name		Name		Name	
Ĺ						- I	ing of the states of the	dada kanad
3.	A single bond (-) represents shared pair of electrons. A double bond (=) represents shared pairs of electrons. A triple bond							
4	(=) represents shared pairs of electrons.							a .a al
4.	Triple bonds are generally and than double bonds. Double bonds are and and than single bonds.							and
5	According to the HONC rule,							
5.	Hydrogen and the Halogens form covalent bond							
	Oxygen (and the other nonmetals in its family, such as sulfur) form covalent bonds							
	<u>N</u> itrogen (and the other nonmetals in its family, such as phosphorus) form covalent bonds							
	<u>Carbon (and silicon) form covalent bonds</u>							
6.	Hydrogen peroxide has the formula H_2O_2 . Which of these is the correct Lewis Structure for H_2O_2 ?							
	Н	Н	••		••			
			:0:		:H:			
	$\bullet O = O^{\bullet}$				••			
	•- •		H— H		• ○ — H•			
	, H	L L	• _ •		• •			
		11	• • •		• • •			